sgmm2-align-compiled.cc
7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// sgmm2bin/sgmm2-align-compiled.cc
// Copyright 2009-2012 Microsoft Corporation; Saarland University
// 2012-2014 Johns Hopkins University (Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "sgmm2/am-sgmm2.h"
#include "hmm/transition-model.h"
#include "hmm/hmm-utils.h"
#include "fstext/fstext-lib.h"
#include "decoder/decoder-wrappers.h"
#include "decoder/training-graph-compiler.h"
#include "sgmm2/decodable-am-sgmm2.h"
#include "lat/kaldi-lattice.h" // for {Compact}LatticeArc
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
typedef kaldi::int32 int32;
using fst::SymbolTable;
using fst::VectorFst;
using fst::StdArc;
const char *usage =
"Align features given [SGMM-based] models.\n"
"Usage: sgmm2-align-compiled [options] <model-in> <graphs-rspecifier> "
"<feature-rspecifier> <alignments-wspecifier>\n"
"e.g.: sgmm2-align-compiled 1.mdl ark:graphs.fsts scp:train.scp ark:1.ali\n";
ParseOptions po(usage);
bool binary = true;
AlignConfig align_config;
BaseFloat acoustic_scale = 1.0;
BaseFloat transition_scale = 1.0;
BaseFloat self_loop_scale = 1.0;
BaseFloat log_prune = 5.0;
std::string gselect_rspecifier, spkvecs_rspecifier, utt2spk_rspecifier;
std::string per_frame_acwt_wspecifier;
align_config.Register(&po);
po.Register("binary", &binary, "Write output in binary mode");
po.Register("log-prune", &log_prune, "Pruning beam used to reduce number "
"of exp() evaluations.");
po.Register("spk-vecs", &spkvecs_rspecifier, "Speaker vectors (rspecifier)");
po.Register("utt2spk", &utt2spk_rspecifier,
"rspecifier for utterance to speaker map");
po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic "
"likelihoods");
po.Register("transition-scale", &transition_scale, "Scaling factor for "
"some transition probabilities [see also self-loop-scale].");
po.Register("self-loop-scale", &self_loop_scale, "Scaling factor for "
"self-loop versus non-self-loop probability mass [controls "
"most transition probabilities.]");
po.Register("write-per-frame-acoustic-loglikes", &per_frame_acwt_wspecifier,
"Wspecifier for table of vectors containing the acoustic log-likelihoods "
"per frame for each utterance. E.g. ark:foo/per_frame_logprobs.1.ark");
po.Register("gselect", &gselect_rspecifier, "Precomputed Gaussian indices "
"(rspecifier)");
po.Read(argc, argv);
if (po.NumArgs() != 4) {
po.PrintUsage();
exit(1);
}
if (gselect_rspecifier == "")
KALDI_ERR << "--gselect option is mandatory.";
std::string model_in_filename = po.GetArg(1),
fst_rspecifier = po.GetArg(2),
feature_rspecifier = po.GetArg(3),
alignment_wspecifier = po.GetArg(4);
TransitionModel trans_model;
AmSgmm2 am_sgmm;
{
bool binary;
Input ki(model_in_filename, &binary);
trans_model.Read(ki.Stream(), binary);
am_sgmm.Read(ki.Stream(), binary);
}
SequentialTableReader<fst::VectorFstHolder> fst_reader(fst_rspecifier);
RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
RandomAccessInt32VectorVectorReader gselect_reader(gselect_rspecifier);
RandomAccessBaseFloatVectorReaderMapped spkvecs_reader(spkvecs_rspecifier,
utt2spk_rspecifier);
Int32VectorWriter alignment_writer(alignment_wspecifier);
BaseFloatVectorWriter per_frame_acwt_writer(per_frame_acwt_wspecifier);
int num_done = 0, num_err = 0, num_retry = 0;
double tot_like = 0.0;
kaldi::int64 frame_count = 0;
for (; !fst_reader.Done(); fst_reader.Next()) {
std::string utt = fst_reader.Key();
if (!feature_reader.HasKey(utt)) {
KALDI_WARN << "No feature found for utterance " << utt;
num_err++;
continue;
}
VectorFst<StdArc> decode_fst(fst_reader.Value());
// stops copy-on-write of the fst by deleting the fst inside the reader,
// since we're about to mutate the fst by adding transition probs.
fst_reader.FreeCurrent();
const Matrix<BaseFloat> &features = feature_reader.Value(utt);
if (features.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << utt;
num_err++;
continue;
}
Sgmm2PerSpkDerivedVars spk_vars;
if (spkvecs_reader.IsOpen()) {
if (spkvecs_reader.HasKey(utt)) {
spk_vars.SetSpeakerVector(spkvecs_reader.Value(utt));
am_sgmm.ComputePerSpkDerivedVars(&spk_vars);
} else {
KALDI_WARN << "Cannot find speaker vector for " << utt;
num_err++;
continue;
}
} // else spk_vars is "empty"
if (!gselect_reader.HasKey(utt)
&& gselect_reader.Value(utt).size() != features.NumRows()) {
KALDI_WARN << "No Gaussian-selection info available for utterance "
<< utt << " (or wrong size)";
num_err++;
}
const std::vector<std::vector<int32> > &gselect =
gselect_reader.Value(utt);
{ // Add transition-probs to the FST.
std::vector<int32> disambig_syms; // empty.
AddTransitionProbs(trans_model, disambig_syms,
transition_scale, self_loop_scale,
&decode_fst);
}
DecodableAmSgmm2Scaled sgmm_decodable(am_sgmm, trans_model, features, gselect,
log_prune, acoustic_scale, &spk_vars);
AlignUtteranceWrapper(align_config, utt,
acoustic_scale, &decode_fst, &sgmm_decodable,
&alignment_writer, NULL,
&num_done, &num_err, &num_retry,
&tot_like, &frame_count, &per_frame_acwt_writer);
}
KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count)
<< " over " << frame_count<< " frames.";
KALDI_LOG << "Retried " << num_retry << " out of "
<< (num_done + num_err) << " utterances.";
KALDI_LOG << "Done " << num_done << ", errors on " << num_err;
return (num_done != 0 ? 0 : 1);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}