agent_scan.cuh
18.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::AgentScan implements a stateful abstraction of CUDA thread blocks for participating in device-wide prefix scan .
*/
#pragma once
#include <iterator>
#include "single_pass_scan_operators.cuh"
#include "../block/block_load.cuh"
#include "../block/block_store.cuh"
#include "../block/block_scan.cuh"
#include "../grid/grid_queue.cuh"
#include "../iterator/cache_modified_input_iterator.cuh"
#include "../util_namespace.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/******************************************************************************
* Tuning policy types
******************************************************************************/
/**
* Parameterizable tuning policy type for AgentScan
*/
template <
int _BLOCK_THREADS, ///< Threads per thread block
int _ITEMS_PER_THREAD, ///< Items per thread (per tile of input)
BlockLoadAlgorithm _LOAD_ALGORITHM, ///< The BlockLoad algorithm to use
CacheLoadModifier _LOAD_MODIFIER, ///< Cache load modifier for reading input elements
BlockStoreAlgorithm _STORE_ALGORITHM, ///< The BlockStore algorithm to use
BlockScanAlgorithm _SCAN_ALGORITHM> ///< The BlockScan algorithm to use
struct AgentScanPolicy
{
enum
{
BLOCK_THREADS = _BLOCK_THREADS, ///< Threads per thread block
ITEMS_PER_THREAD = _ITEMS_PER_THREAD, ///< Items per thread (per tile of input)
};
static const BlockLoadAlgorithm LOAD_ALGORITHM = _LOAD_ALGORITHM; ///< The BlockLoad algorithm to use
static const CacheLoadModifier LOAD_MODIFIER = _LOAD_MODIFIER; ///< Cache load modifier for reading input elements
static const BlockStoreAlgorithm STORE_ALGORITHM = _STORE_ALGORITHM; ///< The BlockStore algorithm to use
static const BlockScanAlgorithm SCAN_ALGORITHM = _SCAN_ALGORITHM; ///< The BlockScan algorithm to use
};
/******************************************************************************
* Thread block abstractions
******************************************************************************/
/**
* \brief AgentScan implements a stateful abstraction of CUDA thread blocks for participating in device-wide prefix scan .
*/
template <
typename AgentScanPolicyT, ///< Parameterized AgentScanPolicyT tuning policy type
typename InputIteratorT, ///< Random-access input iterator type
typename OutputIteratorT, ///< Random-access output iterator type
typename ScanOpT, ///< Scan functor type
typename InitValueT, ///< The init_value element for ScanOpT type (cub::NullType for inclusive scan)
typename OffsetT> ///< Signed integer type for global offsets
struct AgentScan
{
//---------------------------------------------------------------------
// Types and constants
//---------------------------------------------------------------------
// The input value type
typedef typename std::iterator_traits<InputIteratorT>::value_type InputT;
// The output value type
typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ?
typename std::iterator_traits<InputIteratorT>::value_type, // ... then the input iterator's value type,
typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT; // ... else the output iterator's value type
// Tile status descriptor interface type
typedef ScanTileState<OutputT> ScanTileStateT;
// Input iterator wrapper type (for applying cache modifier)
typedef typename If<IsPointer<InputIteratorT>::VALUE,
CacheModifiedInputIterator<AgentScanPolicyT::LOAD_MODIFIER, InputT, OffsetT>, // Wrap the native input pointer with CacheModifiedInputIterator
InputIteratorT>::Type // Directly use the supplied input iterator type
WrappedInputIteratorT;
// Constants
enum
{
IS_INCLUSIVE = Equals<InitValueT, NullType>::VALUE, // Inclusive scan if no init_value type is provided
BLOCK_THREADS = AgentScanPolicyT::BLOCK_THREADS,
ITEMS_PER_THREAD = AgentScanPolicyT::ITEMS_PER_THREAD,
TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD,
};
// Parameterized BlockLoad type
typedef BlockLoad<
OutputT,
AgentScanPolicyT::BLOCK_THREADS,
AgentScanPolicyT::ITEMS_PER_THREAD,
AgentScanPolicyT::LOAD_ALGORITHM>
BlockLoadT;
// Parameterized BlockStore type
typedef BlockStore<
OutputT,
AgentScanPolicyT::BLOCK_THREADS,
AgentScanPolicyT::ITEMS_PER_THREAD,
AgentScanPolicyT::STORE_ALGORITHM>
BlockStoreT;
// Parameterized BlockScan type
typedef BlockScan<
OutputT,
AgentScanPolicyT::BLOCK_THREADS,
AgentScanPolicyT::SCAN_ALGORITHM>
BlockScanT;
// Callback type for obtaining tile prefix during block scan
typedef TilePrefixCallbackOp<
OutputT,
ScanOpT,
ScanTileStateT>
TilePrefixCallbackOpT;
// Stateful BlockScan prefix callback type for managing a running total while scanning consecutive tiles
typedef BlockScanRunningPrefixOp<
OutputT,
ScanOpT>
RunningPrefixCallbackOp;
// Shared memory type for this thread block
union _TempStorage
{
typename BlockLoadT::TempStorage load; // Smem needed for tile loading
typename BlockStoreT::TempStorage store; // Smem needed for tile storing
struct
{
typename TilePrefixCallbackOpT::TempStorage prefix; // Smem needed for cooperative prefix callback
typename BlockScanT::TempStorage scan; // Smem needed for tile scanning
};
};
// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
//---------------------------------------------------------------------
// Per-thread fields
//---------------------------------------------------------------------
_TempStorage& temp_storage; ///< Reference to temp_storage
WrappedInputIteratorT d_in; ///< Input data
OutputIteratorT d_out; ///< Output data
ScanOpT scan_op; ///< Binary scan operator
InitValueT init_value; ///< The init_value element for ScanOpT
//---------------------------------------------------------------------
// Block scan utility methods
//---------------------------------------------------------------------
/**
* Exclusive scan specialization (first tile)
*/
__device__ __forceinline__
void ScanTile(
OutputT (&items)[ITEMS_PER_THREAD],
OutputT init_value,
ScanOpT scan_op,
OutputT &block_aggregate,
Int2Type<false> /*is_inclusive*/)
{
BlockScanT(temp_storage.scan).ExclusiveScan(items, items, init_value, scan_op, block_aggregate);
block_aggregate = scan_op(init_value, block_aggregate);
}
/**
* Inclusive scan specialization (first tile)
*/
__device__ __forceinline__
void ScanTile(
OutputT (&items)[ITEMS_PER_THREAD],
InitValueT /*init_value*/,
ScanOpT scan_op,
OutputT &block_aggregate,
Int2Type<true> /*is_inclusive*/)
{
BlockScanT(temp_storage.scan).InclusiveScan(items, items, scan_op, block_aggregate);
}
/**
* Exclusive scan specialization (subsequent tiles)
*/
template <typename PrefixCallback>
__device__ __forceinline__
void ScanTile(
OutputT (&items)[ITEMS_PER_THREAD],
ScanOpT scan_op,
PrefixCallback &prefix_op,
Int2Type<false> /*is_inclusive*/)
{
BlockScanT(temp_storage.scan).ExclusiveScan(items, items, scan_op, prefix_op);
}
/**
* Inclusive scan specialization (subsequent tiles)
*/
template <typename PrefixCallback>
__device__ __forceinline__
void ScanTile(
OutputT (&items)[ITEMS_PER_THREAD],
ScanOpT scan_op,
PrefixCallback &prefix_op,
Int2Type<true> /*is_inclusive*/)
{
BlockScanT(temp_storage.scan).InclusiveScan(items, items, scan_op, prefix_op);
}
//---------------------------------------------------------------------
// Constructor
//---------------------------------------------------------------------
// Constructor
__device__ __forceinline__
AgentScan(
TempStorage& temp_storage, ///< Reference to temp_storage
InputIteratorT d_in, ///< Input data
OutputIteratorT d_out, ///< Output data
ScanOpT scan_op, ///< Binary scan operator
InitValueT init_value) ///< Initial value to seed the exclusive scan
:
temp_storage(temp_storage.Alias()),
d_in(d_in),
d_out(d_out),
scan_op(scan_op),
init_value(init_value)
{}
//---------------------------------------------------------------------
// Cooperatively scan a device-wide sequence of tiles with other CTAs
//---------------------------------------------------------------------
/**
* Process a tile of input (dynamic chained scan)
*/
template <bool IS_LAST_TILE> ///< Whether the current tile is the last tile
__device__ __forceinline__ void ConsumeTile(
OffsetT num_remaining, ///< Number of global input items remaining (including this tile)
int tile_idx, ///< Tile index
OffsetT tile_offset, ///< Tile offset
ScanTileStateT& tile_state) ///< Global tile state descriptor
{
// Load items
OutputT items[ITEMS_PER_THREAD];
if (IS_LAST_TILE)
BlockLoadT(temp_storage.load).Load(d_in + tile_offset, items, num_remaining);
else
BlockLoadT(temp_storage.load).Load(d_in + tile_offset, items);
CTA_SYNC();
// Perform tile scan
if (tile_idx == 0)
{
// Scan first tile
OutputT block_aggregate;
ScanTile(items, init_value, scan_op, block_aggregate, Int2Type<IS_INCLUSIVE>());
if ((!IS_LAST_TILE) && (threadIdx.x == 0))
tile_state.SetInclusive(0, block_aggregate);
}
else
{
// Scan non-first tile
TilePrefixCallbackOpT prefix_op(tile_state, temp_storage.prefix, scan_op, tile_idx);
ScanTile(items, scan_op, prefix_op, Int2Type<IS_INCLUSIVE>());
}
CTA_SYNC();
// Store items
if (IS_LAST_TILE)
BlockStoreT(temp_storage.store).Store(d_out + tile_offset, items, num_remaining);
else
BlockStoreT(temp_storage.store).Store(d_out + tile_offset, items);
}
/**
* Scan tiles of items as part of a dynamic chained scan
*/
__device__ __forceinline__ void ConsumeRange(
int num_items, ///< Total number of input items
ScanTileStateT& tile_state, ///< Global tile state descriptor
int start_tile) ///< The starting tile for the current grid
{
// Blocks are launched in increasing order, so just assign one tile per block
int tile_idx = start_tile + blockIdx.x; // Current tile index
OffsetT tile_offset = OffsetT(TILE_ITEMS) * tile_idx; // Global offset for the current tile
OffsetT num_remaining = num_items - tile_offset; // Remaining items (including this tile)
if (num_remaining > TILE_ITEMS)
{
// Not last tile
ConsumeTile<false>(num_remaining, tile_idx, tile_offset, tile_state);
}
else if (num_remaining > 0)
{
// Last tile
ConsumeTile<true>(num_remaining, tile_idx, tile_offset, tile_state);
}
}
//---------------------------------------------------------------------
// Scan an sequence of consecutive tiles (independent of other thread blocks)
//---------------------------------------------------------------------
/**
* Process a tile of input
*/
template <
bool IS_FIRST_TILE,
bool IS_LAST_TILE>
__device__ __forceinline__ void ConsumeTile(
OffsetT tile_offset, ///< Tile offset
RunningPrefixCallbackOp& prefix_op, ///< Running prefix operator
int valid_items = TILE_ITEMS) ///< Number of valid items in the tile
{
// Load items
OutputT items[ITEMS_PER_THREAD];
if (IS_LAST_TILE)
BlockLoadT(temp_storage.load).Load(d_in + tile_offset, items, valid_items);
else
BlockLoadT(temp_storage.load).Load(d_in + tile_offset, items);
CTA_SYNC();
// Block scan
if (IS_FIRST_TILE)
{
OutputT block_aggregate;
ScanTile(items, init_value, scan_op, block_aggregate, Int2Type<IS_INCLUSIVE>());
prefix_op.running_total = block_aggregate;
}
else
{
ScanTile(items, scan_op, prefix_op, Int2Type<IS_INCLUSIVE>());
}
CTA_SYNC();
// Store items
if (IS_LAST_TILE)
BlockStoreT(temp_storage.store).Store(d_out + tile_offset, items, valid_items);
else
BlockStoreT(temp_storage.store).Store(d_out + tile_offset, items);
}
/**
* Scan a consecutive share of input tiles
*/
__device__ __forceinline__ void ConsumeRange(
OffsetT range_offset, ///< [in] Threadblock begin offset (inclusive)
OffsetT range_end) ///< [in] Threadblock end offset (exclusive)
{
BlockScanRunningPrefixOp<OutputT, ScanOpT> prefix_op(scan_op);
if (range_offset + TILE_ITEMS <= range_end)
{
// Consume first tile of input (full)
ConsumeTile<true, true>(range_offset, prefix_op);
range_offset += TILE_ITEMS;
// Consume subsequent full tiles of input
while (range_offset + TILE_ITEMS <= range_end)
{
ConsumeTile<false, true>(range_offset, prefix_op);
range_offset += TILE_ITEMS;
}
// Consume a partially-full tile
if (range_offset < range_end)
{
int valid_items = range_end - range_offset;
ConsumeTile<false, false>(range_offset, prefix_op, valid_items);
}
}
else
{
// Consume the first tile of input (partially-full)
int valid_items = range_end - range_offset;
ConsumeTile<true, false>(range_offset, prefix_op, valid_items);
}
}
/**
* Scan a consecutive share of input tiles, seeded with the specified prefix value
*/
__device__ __forceinline__ void ConsumeRange(
OffsetT range_offset, ///< [in] Threadblock begin offset (inclusive)
OffsetT range_end, ///< [in] Threadblock end offset (exclusive)
OutputT prefix) ///< [in] The prefix to apply to the scan segment
{
BlockScanRunningPrefixOp<OutputT, ScanOpT> prefix_op(prefix, scan_op);
// Consume full tiles of input
while (range_offset + TILE_ITEMS <= range_end)
{
ConsumeTile<true, false>(range_offset, prefix_op);
range_offset += TILE_ITEMS;
}
// Consume a partially-full tile
if (range_offset < range_end)
{
int valid_items = range_end - range_offset;
ConsumeTile<false, false>(range_offset, prefix_op, valid_items);
}
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)