test_device_reduce_by_key.cu
29.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/******************************************************************************
* Test of DeviceReduce::ReduceByKey utilities
******************************************************************************/
// Ensure printing of CUDA runtime errors to console
#define CUB_STDERR
#include <stdio.h>
#include <typeinfo>
#include <thrust/device_ptr.h>
#include <thrust/reduce.h>
#include <thrust/iterator/constant_iterator.h>
#include <cub/util_allocator.cuh>
#include <cub/iterator/constant_input_iterator.cuh>
#include <cub/device/device_reduce.cuh>
#include <cub/device/device_run_length_encode.cuh>
#include <cub/thread/thread_operators.cuh>
#include "test_util.h"
using namespace cub;
//---------------------------------------------------------------------
// Globals, constants and typedefs
//---------------------------------------------------------------------
bool g_verbose = false;
int g_timing_iterations = 0;
int g_repeat = 0;
CachingDeviceAllocator g_allocator(true);
// Dispatch types
enum Backend
{
CUB, // CUB method
THRUST, // Thrust method
CDP, // GPU-based (dynamic parallelism) dispatch to CUB method
};
//---------------------------------------------------------------------
// Dispatch to different CUB entrypoints
//---------------------------------------------------------------------
/**
* Dispatch to reduce-by-key entrypoint
*/
template <
typename KeyInputIteratorT,
typename KeyOutputIteratorT,
typename ValueInputIteratorT,
typename ValueOutputIteratorT,
typename NumRunsIteratorT,
typename EqualityOpT,
typename ReductionOpT,
typename OffsetT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
Int2Type<CUB> dispatch_to,
int timing_timing_iterations,
size_t *d_temp_storage_bytes,
cudaError_t *d_cdp_error,
void *d_temp_storage,
size_t &temp_storage_bytes,
KeyInputIteratorT d_keys_in,
KeyOutputIteratorT d_keys_out,
ValueInputIteratorT d_values_in,
ValueOutputIteratorT d_values_out,
NumRunsIteratorT d_num_runs,
EqualityOpT equality_op,
ReductionOpT reduction_op,
OffsetT num_items,
cudaStream_t stream,
bool debug_synchronous)
{
cudaError_t error = cudaSuccess;
for (int i = 0; i < timing_timing_iterations; ++i)
{
error = DeviceReduce::ReduceByKey(
d_temp_storage,
temp_storage_bytes,
d_keys_in,
d_keys_out,
d_values_in,
d_values_out,
d_num_runs,
reduction_op,
num_items,
stream,
debug_synchronous);
}
return error;
}
//---------------------------------------------------------------------
// Dispatch to different Thrust entrypoints
//---------------------------------------------------------------------
/**
* Dispatch to reduce-by-key entrypoint
*/
template <
typename KeyInputIteratorT,
typename KeyOutputIteratorT,
typename ValueInputIteratorT,
typename ValueOutputIteratorT,
typename NumRunsIteratorT,
typename EqualityOpT,
typename ReductionOpT,
typename OffsetT>
cudaError_t Dispatch(
Int2Type<THRUST> dispatch_to,
int timing_timing_iterations,
size_t *d_temp_storage_bytes,
cudaError_t *d_cdp_error,
void *d_temp_storage,
size_t &temp_storage_bytes,
KeyInputIteratorT d_keys_in,
KeyOutputIteratorT d_keys_out,
ValueInputIteratorT d_values_in,
ValueOutputIteratorT d_values_out,
NumRunsIteratorT d_num_runs,
EqualityOpT equality_op,
ReductionOpT reduction_op,
OffsetT num_items,
cudaStream_t stream,
bool debug_synchronous)
{
// The input keys type
typedef typename std::iterator_traits<KeyInputIteratorT>::value_type KeyInputT;
// The output keys type
typedef typename If<(Equals<typename std::iterator_traits<KeyOutputIteratorT>::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ?
typename std::iterator_traits<KeyInputIteratorT>::value_type, // ... then the input iterator's value type,
typename std::iterator_traits<KeyOutputIteratorT>::value_type>::Type KeyOutputT; // ... else the output iterator's value type
// The input values type
typedef typename std::iterator_traits<ValueInputIteratorT>::value_type ValueInputT;
// The output values type
typedef typename If<(Equals<typename std::iterator_traits<ValueOutputIteratorT>::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ?
typename std::iterator_traits<ValueInputIteratorT>::value_type, // ... then the input iterator's value type,
typename std::iterator_traits<ValueOutputIteratorT>::value_type>::Type ValueOuputT; // ... else the output iterator's value type
if (d_temp_storage == 0)
{
temp_storage_bytes = 1;
}
else
{
thrust::device_ptr<KeyInputT> d_keys_in_wrapper(d_keys_in);
thrust::device_ptr<KeyOutputT> d_keys_out_wrapper(d_keys_out);
thrust::device_ptr<ValueInputT> d_values_in_wrapper(d_values_in);
thrust::device_ptr<ValueOuputT> d_values_out_wrapper(d_values_out);
thrust::pair<thrust::device_ptr<KeyOutputT>, thrust::device_ptr<ValueOuputT> > d_out_ends;
for (int i = 0; i < timing_timing_iterations; ++i)
{
d_out_ends = thrust::reduce_by_key(
d_keys_in_wrapper,
d_keys_in_wrapper + num_items,
d_values_in_wrapper,
d_keys_out_wrapper,
d_values_out_wrapper);
}
OffsetT num_segments = OffsetT(d_out_ends.first - d_keys_out_wrapper);
CubDebugExit(cudaMemcpy(d_num_runs, &num_segments, sizeof(OffsetT), cudaMemcpyHostToDevice));
}
return cudaSuccess;
}
//---------------------------------------------------------------------
// CUDA Nested Parallelism Test Kernel
//---------------------------------------------------------------------
/**
* Simple wrapper kernel to invoke DeviceSelect
*/
template <
typename KeyInputIteratorT,
typename KeyOutputIteratorT,
typename ValueInputIteratorT,
typename ValueOutputIteratorT,
typename NumRunsIteratorT,
typename EqualityOpT,
typename ReductionOpT,
typename OffsetT>
__global__ void CnpDispatchKernel(
int timing_timing_iterations,
size_t *d_temp_storage_bytes,
cudaError_t *d_cdp_error,
void *d_temp_storage,
size_t temp_storage_bytes,
KeyInputIteratorT d_keys_in,
KeyOutputIteratorT d_keys_out,
ValueInputIteratorT d_values_in,
ValueOutputIteratorT d_values_out,
NumRunsIteratorT d_num_runs,
EqualityOpT equality_op,
ReductionOpT reduction_op,
OffsetT num_items,
cudaStream_t stream,
bool debug_synchronous)
{
#ifndef CUB_CDP
*d_cdp_error = cudaErrorNotSupported;
#else
*d_cdp_error = Dispatch(Int2Type<CUB>(), timing_timing_iterations, d_temp_storage_bytes, d_cdp_error,
d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, debug_synchronous);
*d_temp_storage_bytes = temp_storage_bytes;
#endif
}
/**
* Dispatch to CDP kernel
*/
template <
typename KeyInputIteratorT,
typename KeyOutputIteratorT,
typename ValueInputIteratorT,
typename ValueOutputIteratorT,
typename NumRunsIteratorT,
typename EqualityOpT,
typename ReductionOpT,
typename OffsetT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
Int2Type<CDP> dispatch_to,
int timing_timing_iterations,
size_t *d_temp_storage_bytes,
cudaError_t *d_cdp_error,
void *d_temp_storage,
size_t &temp_storage_bytes,
KeyInputIteratorT d_keys_in,
KeyOutputIteratorT d_keys_out,
ValueInputIteratorT d_values_in,
ValueOutputIteratorT d_values_out,
NumRunsIteratorT d_num_runs,
EqualityOpT equality_op,
ReductionOpT reduction_op,
OffsetT num_items,
cudaStream_t stream,
bool debug_synchronous)
{
// Invoke kernel to invoke device-side dispatch
CnpDispatchKernel<<<1,1>>>(timing_timing_iterations, d_temp_storage_bytes, d_cdp_error,
d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, debug_synchronous);
// Copy out temp_storage_bytes
CubDebugExit(cudaMemcpy(&temp_storage_bytes, d_temp_storage_bytes, sizeof(size_t) * 1, cudaMemcpyDeviceToHost));
// Copy out error
cudaError_t retval;
CubDebugExit(cudaMemcpy(&retval, d_cdp_error, sizeof(cudaError_t) * 1, cudaMemcpyDeviceToHost));
return retval;
}
//---------------------------------------------------------------------
// Test generation
//---------------------------------------------------------------------
/**
* Initialize problem
*/
template <typename T>
void Initialize(
int entropy_reduction,
T *h_in,
int num_items,
int max_segment)
{
unsigned int max_int = (unsigned int) -1;
int key = 0;
int i = 0;
while (i < num_items)
{
// Select number of repeating occurrences
int repeat;
if (max_segment < 0)
{
repeat = num_items;
}
else if (max_segment < 2)
{
repeat = 1;
}
else
{
RandomBits(repeat, entropy_reduction);
repeat = (int) ((double(repeat) * double(max_segment)) / double(max_int));
repeat = CUB_MAX(1, repeat);
}
int j = i;
while (j < CUB_MIN(i + repeat, num_items))
{
InitValue(INTEGER_SEED, h_in[j], key);
j++;
}
i = j;
key++;
}
if (g_verbose)
{
printf("Input:\n");
DisplayResults(h_in, num_items);
printf("\n\n");
}
}
/**
* Solve problem. Returns total number of segments identified
*/
template <
typename KeyInputIteratorT,
typename ValueInputIteratorT,
typename KeyT,
typename ValueT,
typename EqualityOpT,
typename ReductionOpT>
int Solve(
KeyInputIteratorT h_keys_in,
KeyT *h_keys_reference,
ValueInputIteratorT h_values_in,
ValueT *h_values_reference,
EqualityOpT equality_op,
ReductionOpT reduction_op,
int num_items)
{
// First item
KeyT previous = h_keys_in[0];
ValueT aggregate = h_values_in[0];
int num_segments = 0;
// Subsequent items
for (int i = 1; i < num_items; ++i)
{
if (!equality_op(previous, h_keys_in[i]))
{
h_keys_reference[num_segments] = previous;
h_values_reference[num_segments] = aggregate;
num_segments++;
aggregate = h_values_in[i];
}
else
{
aggregate = reduction_op(aggregate, h_values_in[i]);
}
previous = h_keys_in[i];
}
h_keys_reference[num_segments] = previous;
h_values_reference[num_segments] = aggregate;
num_segments++;
return num_segments;
}
/**
* Test DeviceSelect for a given problem input
*/
template <
Backend BACKEND,
typename DeviceKeyInputIteratorT,
typename DeviceValueInputIteratorT,
typename KeyT,
typename ValueT,
typename EqualityOpT,
typename ReductionOpT>
void Test(
DeviceKeyInputIteratorT d_keys_in,
DeviceValueInputIteratorT d_values_in,
KeyT* h_keys_reference,
ValueT* h_values_reference,
EqualityOpT equality_op,
ReductionOpT reduction_op,
int num_segments,
int num_items)
{
// Allocate device output arrays and number of segments
KeyT* d_keys_out = NULL;
ValueT* d_values_out = NULL;
int* d_num_runs = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_keys_out, sizeof(KeyT) * num_items));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_values_out, sizeof(ValueT) * num_items));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_num_runs, sizeof(int)));
// Allocate CDP device arrays
size_t *d_temp_storage_bytes = NULL;
cudaError_t *d_cdp_error = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_temp_storage_bytes, sizeof(size_t) * 1));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_cdp_error, sizeof(cudaError_t) * 1));
// Allocate temporary storage
void *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
CubDebugExit(Dispatch(Int2Type<BACKEND>(), 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, true));
CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));
// Clear device output arrays
CubDebugExit(cudaMemset(d_keys_out, 0, sizeof(KeyT) * num_items));
CubDebugExit(cudaMemset(d_values_out, 0, sizeof(ValueT) * num_items));
CubDebugExit(cudaMemset(d_num_runs, 0, sizeof(int)));
// Run warmup/correctness iteration
CubDebugExit(Dispatch(Int2Type<BACKEND>(), 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, true));
// Check for correctness (and display results, if specified)
int compare1 = CompareDeviceResults(h_keys_reference, d_keys_out, num_segments, true, g_verbose);
printf("\t Keys %s ", compare1 ? "FAIL" : "PASS");
int compare2 = CompareDeviceResults(h_values_reference, d_values_out, num_segments, true, g_verbose);
printf("\t Values %s ", compare2 ? "FAIL" : "PASS");
int compare3 = CompareDeviceResults(&num_segments, d_num_runs, 1, true, g_verbose);
printf("\t Count %s ", compare3 ? "FAIL" : "PASS");
// Flush any stdout/stderr
fflush(stdout);
fflush(stderr);
// Performance
GpuTimer gpu_timer;
gpu_timer.Start();
CubDebugExit(Dispatch(Int2Type<BACKEND>(), g_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, false));
gpu_timer.Stop();
float elapsed_millis = gpu_timer.ElapsedMillis();
// Display performance
if (g_timing_iterations > 0)
{
float avg_millis = elapsed_millis / g_timing_iterations;
float giga_rate = float(num_items) / avg_millis / 1000.0f / 1000.0f;
int bytes_moved = ((num_items + num_segments) * sizeof(KeyT)) + ((num_items + num_segments) * sizeof(ValueT));
float giga_bandwidth = float(bytes_moved) / avg_millis / 1000.0f / 1000.0f;
printf(", %.3f avg ms, %.3f billion items/s, %.3f logical GB/s", avg_millis, giga_rate, giga_bandwidth);
}
printf("\n\n");
// Flush any stdout/stderr
fflush(stdout);
fflush(stderr);
// Cleanup
if (d_keys_out) CubDebugExit(g_allocator.DeviceFree(d_keys_out));
if (d_values_out) CubDebugExit(g_allocator.DeviceFree(d_values_out));
if (d_num_runs) CubDebugExit(g_allocator.DeviceFree(d_num_runs));
if (d_temp_storage_bytes) CubDebugExit(g_allocator.DeviceFree(d_temp_storage_bytes));
if (d_cdp_error) CubDebugExit(g_allocator.DeviceFree(d_cdp_error));
if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));
// Correctness asserts
AssertEquals(0, compare1 | compare2 | compare3);
}
/**
* Test DeviceSelect on pointer type
*/
template <
Backend BACKEND,
typename KeyT,
typename ValueT,
typename ReductionOpT>
void TestPointer(
int num_items,
int entropy_reduction,
int max_segment,
ReductionOpT reduction_op)
{
// Allocate host arrays
KeyT* h_keys_in = new KeyT[num_items];
KeyT* h_keys_reference = new KeyT[num_items];
ValueT* h_values_in = new ValueT[num_items];
ValueT* h_values_reference = new ValueT[num_items];
for (int i = 0; i < num_items; ++i)
InitValue(INTEGER_SEED, h_values_in[i], 1);
// Initialize problem and solution
Equality equality_op;
Initialize(entropy_reduction, h_keys_in, num_items, max_segment);
int num_segments = Solve(h_keys_in, h_keys_reference, h_values_in, h_values_reference, equality_op, reduction_op, num_items);
printf("\nPointer %s cub::DeviceReduce::ReduceByKey %s reduction of %d items, %d segments (avg run length %.3f), {%s,%s} key value pairs, max_segment %d, entropy_reduction %d\n",
(BACKEND == CDP) ? "CDP CUB" : (BACKEND == THRUST) ? "Thrust" : "CUB",
(Equals<ReductionOpT, Sum>::VALUE) ? "Sum" : "Max",
num_items, num_segments, float(num_items) / num_segments,
typeid(KeyT).name(), typeid(ValueT).name(),
max_segment, entropy_reduction);
fflush(stdout);
// Allocate problem device arrays
KeyT *d_keys_in = NULL;
ValueT *d_values_in = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_keys_in, sizeof(KeyT) * num_items));
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_values_in, sizeof(ValueT) * num_items));
// Initialize device input
CubDebugExit(cudaMemcpy(d_keys_in, h_keys_in, sizeof(KeyT) * num_items, cudaMemcpyHostToDevice));
CubDebugExit(cudaMemcpy(d_values_in, h_values_in, sizeof(ValueT) * num_items, cudaMemcpyHostToDevice));
// Run Test
Test<BACKEND>(d_keys_in, d_values_in, h_keys_reference, h_values_reference, equality_op, reduction_op, num_segments, num_items);
// Cleanup
if (h_keys_in) delete[] h_keys_in;
if (h_values_in) delete[] h_values_in;
if (h_keys_reference) delete[] h_keys_reference;
if (h_values_reference) delete[] h_values_reference;
if (d_keys_in) CubDebugExit(g_allocator.DeviceFree(d_keys_in));
if (d_values_in) CubDebugExit(g_allocator.DeviceFree(d_values_in));
}
/**
* Test on iterator type
*/
template <
Backend BACKEND,
typename KeyT,
typename ValueT,
typename ReductionOpT>
void TestIterator(
int num_items,
int entropy_reduction,
int max_segment,
ReductionOpT reduction_op)
{
// Allocate host arrays
KeyT* h_keys_in = new KeyT[num_items];
KeyT* h_keys_reference = new KeyT[num_items];
ValueT one_val;
InitValue(INTEGER_SEED, one_val, 1);
ConstantInputIterator<ValueT, int> h_values_in(one_val);
ValueT* h_values_reference = new ValueT[num_items];
// Initialize problem and solution
Equality equality_op;
Initialize(entropy_reduction, h_keys_in, num_items, max_segment);
int num_segments = Solve(h_keys_in, h_keys_reference, h_values_in, h_values_reference, equality_op, reduction_op, num_items);
printf("\nIterator %s cub::DeviceReduce::ReduceByKey %s reduction of %d items, %d segments (avg run length %.3f), {%s,%s} key value pairs, max_segment %d, entropy_reduction %d\n",
(BACKEND == CDP) ? "CDP CUB" : (BACKEND == THRUST) ? "Thrust" : "CUB",
(Equals<ReductionOpT, Sum>::VALUE) ? "Sum" : "Max",
num_items, num_segments, float(num_items) / num_segments,
typeid(KeyT).name(), typeid(ValueT).name(),
max_segment, entropy_reduction);
fflush(stdout);
// Allocate problem device arrays
KeyT *d_keys_in = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_keys_in, sizeof(KeyT) * num_items));
// Initialize device input
CubDebugExit(cudaMemcpy(d_keys_in, h_keys_in, sizeof(KeyT) * num_items, cudaMemcpyHostToDevice));
// Run Test
Test<BACKEND>(d_keys_in, h_values_in, h_keys_reference, h_values_reference, equality_op, reduction_op, num_segments, num_items);
// Cleanup
if (h_keys_in) delete[] h_keys_in;
if (h_keys_reference) delete[] h_keys_reference;
if (h_values_reference) delete[] h_values_reference;
if (d_keys_in) CubDebugExit(g_allocator.DeviceFree(d_keys_in));
}
/**
* Test different gen modes
*/
template <
Backend BACKEND,
typename KeyT,
typename ValueT,
typename ReductionOpT>
void Test(
int num_items,
ReductionOpT reduction_op,
int max_segment)
{
// 0 key-bit entropy reduction rounds
TestPointer<BACKEND, KeyT, ValueT>(num_items, 0, max_segment, reduction_op);
if (max_segment > 1)
{
// 2 key-bit entropy reduction rounds
TestPointer<BACKEND, KeyT, ValueT>(num_items, 2, max_segment, reduction_op);
// 7 key-bit entropy reduction rounds
TestPointer<BACKEND, KeyT, ValueT>(num_items, 7, max_segment, reduction_op);
}
}
/**
* Test different avg segment lengths modes
*/
template <
Backend BACKEND,
typename KeyT,
typename ValueT,
typename ReductionOpT>
void Test(
int num_items,
ReductionOpT reduction_op)
{
Test<BACKEND, KeyT, ValueT>(num_items, reduction_op, -1);
Test<BACKEND, KeyT, ValueT>(num_items, reduction_op, 1);
// Evaluate different max-segment lengths
for (int max_segment = 3; max_segment < CUB_MIN(num_items, (unsigned short) -1); max_segment *= 11)
{
Test<BACKEND, KeyT, ValueT>(num_items, reduction_op, max_segment);
}
}
/**
* Test different dispatch
*/
template <
typename KeyT,
typename ValueT,
typename ReductionOpT>
void TestDispatch(
int num_items,
ReductionOpT reduction_op)
{
Test<CUB, KeyT, ValueT>(num_items, reduction_op);
#ifdef CUB_CDP
Test<CDP, KeyT, ValueT>(num_items, reduction_op);
#endif
}
/**
* Test different input sizes
*/
template <
typename KeyT,
typename ValueT,
typename ReductionOpT>
void TestSize(
int num_items,
ReductionOpT reduction_op)
{
if (num_items < 0)
{
TestDispatch<KeyT, ValueT>(1, reduction_op);
TestDispatch<KeyT, ValueT>(100, reduction_op);
TestDispatch<KeyT, ValueT>(10000, reduction_op);
TestDispatch<KeyT, ValueT>(1000000, reduction_op);
}
else
{
TestDispatch<KeyT, ValueT>(num_items, reduction_op);
}
}
template <
typename KeyT,
typename ValueT>
void TestOp(
int num_items)
{
TestSize<KeyT, ValueT>(num_items, cub::Sum());
TestSize<KeyT, ValueT>(num_items, cub::Max());
}
//---------------------------------------------------------------------
// Main
//---------------------------------------------------------------------
/**
* Main
*/
int main(int argc, char** argv)
{
int num_items = -1;
int entropy_reduction = 0;
int maxseg = 1000;
// Initialize command line
CommandLineArgs args(argc, argv);
g_verbose = args.CheckCmdLineFlag("v");
args.GetCmdLineArgument("n", num_items);
args.GetCmdLineArgument("i", g_timing_iterations);
args.GetCmdLineArgument("repeat", g_repeat);
args.GetCmdLineArgument("maxseg", maxseg);
args.GetCmdLineArgument("entropy", entropy_reduction);
// Print usage
if (args.CheckCmdLineFlag("help"))
{
printf("%s "
"[--n=<input items> "
"[--i=<timing iterations> "
"[--device=<device-id>] "
"[--maxseg=<max segment length>]"
"[--entropy=<segment length bit entropy reduction rounds>]"
"[--repeat=<repetitions of entire test suite>]"
"[--v] "
"[--cdp]"
"\n", argv[0]);
exit(0);
}
// Initialize device
CubDebugExit(args.DeviceInit());
printf("\n");
// Get ptx version
int ptx_version;
CubDebugExit(PtxVersion(ptx_version));
#ifdef QUICKER_TEST
// Compile/run basic CUB test
if (num_items < 0) num_items = 32000000;
TestPointer<CUB, int, double>(num_items, entropy_reduction, maxseg, cub::Sum());
TestPointer<CUB, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());
TestIterator<CUB, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());
#elif defined(QUICK_TEST)
// Compile/run quick tests
if (num_items < 0) num_items = 32000000;
printf("---- RLE int ---- \n");
TestIterator<CUB, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());
printf("---- RLE long long ---- \n");
TestIterator<CUB, long long, int>(num_items, entropy_reduction, maxseg, cub::Sum());
printf("---- int ---- \n");
TestPointer<CUB, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());
TestPointer<THRUST, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());
printf("---- float ---- \n");
TestPointer<CUB, int, float>(num_items, entropy_reduction, maxseg, cub::Sum());
TestPointer<THRUST, int, float>(num_items, entropy_reduction, maxseg, cub::Sum());
if (ptx_version > 120) // Don't check doubles on PTX120 or below because they're down-converted
{
printf("---- double ---- \n");
TestPointer<CUB, int, double>(num_items, entropy_reduction, maxseg, cub::Sum());
TestPointer<THRUST, int, double>(num_items, entropy_reduction, maxseg, cub::Sum());
}
#else
// Compile/run thorough tests
for (int i = 0; i <= g_repeat; ++i)
{
// Test different input types
TestOp<int, char>(num_items);
TestOp<int, short>(num_items);
TestOp<int, int>(num_items);
TestOp<int, long>(num_items);
TestOp<int, long long>(num_items);
TestOp<int, float>(num_items);
if (ptx_version > 120) // Don't check doubles on PTX120 or below because they're down-converted
TestOp<int, double>(num_items);
TestOp<int, uchar2>(num_items);
TestOp<int, uint2>(num_items);
TestOp<int, uint3>(num_items);
TestOp<int, uint4>(num_items);
TestOp<int, ulonglong4>(num_items);
TestOp<int, TestFoo>(num_items);
TestOp<int, TestBar>(num_items);
TestOp<char, int>(num_items);
TestOp<long long, int>(num_items);
TestOp<TestFoo, int>(num_items);
TestOp<TestBar, int>(num_items);
}
#endif
return 0;
}