test_device_reduce_by_key.cu 29.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/******************************************************************************
 * Test of DeviceReduce::ReduceByKey utilities
 ******************************************************************************/

// Ensure printing of CUDA runtime errors to console
#define CUB_STDERR

#include <stdio.h>
#include <typeinfo>

#include <thrust/device_ptr.h>
#include <thrust/reduce.h>
#include <thrust/iterator/constant_iterator.h>

#include <cub/util_allocator.cuh>
#include <cub/iterator/constant_input_iterator.cuh>
#include <cub/device/device_reduce.cuh>
#include <cub/device/device_run_length_encode.cuh>
#include <cub/thread/thread_operators.cuh>

#include "test_util.h"

using namespace cub;


//---------------------------------------------------------------------
// Globals, constants and typedefs
//---------------------------------------------------------------------

bool                    g_verbose           = false;
int                     g_timing_iterations = 0;
int                     g_repeat            = 0;
CachingDeviceAllocator  g_allocator(true);

// Dispatch types
enum Backend
{
    CUB,        // CUB method
    THRUST,     // Thrust method
    CDP,        // GPU-based (dynamic parallelism) dispatch to CUB method
};


//---------------------------------------------------------------------
// Dispatch to different CUB entrypoints
//---------------------------------------------------------------------

/**
 * Dispatch to reduce-by-key entrypoint
 */
template <
    typename                    KeyInputIteratorT,
    typename                    KeyOutputIteratorT,
    typename                    ValueInputIteratorT,
    typename                    ValueOutputIteratorT,
    typename                    NumRunsIteratorT,
    typename                    EqualityOpT,
    typename                    ReductionOpT,
    typename                    OffsetT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB>               dispatch_to,
    int                         timing_timing_iterations,
    size_t                      *d_temp_storage_bytes,
    cudaError_t                 *d_cdp_error,

    void                        *d_temp_storage,
    size_t                      &temp_storage_bytes,
    KeyInputIteratorT           d_keys_in,
    KeyOutputIteratorT          d_keys_out,
    ValueInputIteratorT         d_values_in,
    ValueOutputIteratorT        d_values_out,
    NumRunsIteratorT            d_num_runs,
    EqualityOpT                  equality_op,
    ReductionOpT                 reduction_op,
    OffsetT                     num_items,
    cudaStream_t                stream,
    bool                        debug_synchronous)
{
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceReduce::ReduceByKey(
            d_temp_storage,
            temp_storage_bytes,
            d_keys_in,
            d_keys_out,
            d_values_in,
            d_values_out,
            d_num_runs,
            reduction_op,
            num_items,
            stream,
            debug_synchronous);
    }
    return error;
}


//---------------------------------------------------------------------
// Dispatch to different Thrust entrypoints
//---------------------------------------------------------------------

/**
 * Dispatch to reduce-by-key entrypoint
 */
template <
    typename                    KeyInputIteratorT,
    typename                    KeyOutputIteratorT,
    typename                    ValueInputIteratorT,
    typename                    ValueOutputIteratorT,
    typename                    NumRunsIteratorT,
    typename                    EqualityOpT,
    typename                    ReductionOpT,
    typename                    OffsetT>
cudaError_t Dispatch(
    Int2Type<THRUST>            dispatch_to,
    int                         timing_timing_iterations,
    size_t                      *d_temp_storage_bytes,
    cudaError_t                 *d_cdp_error,

    void                        *d_temp_storage,
    size_t                      &temp_storage_bytes,
    KeyInputIteratorT           d_keys_in,
    KeyOutputIteratorT          d_keys_out,
    ValueInputIteratorT         d_values_in,
    ValueOutputIteratorT        d_values_out,
    NumRunsIteratorT            d_num_runs,
    EqualityOpT                 equality_op,
    ReductionOpT                reduction_op,
    OffsetT                     num_items,
    cudaStream_t                stream,
    bool                        debug_synchronous)
{
    // The input keys type
    typedef typename std::iterator_traits<KeyInputIteratorT>::value_type KeyInputT;

    // The output keys type
    typedef typename If<(Equals<typename std::iterator_traits<KeyOutputIteratorT>::value_type, void>::VALUE),   // OutputT =  (if output iterator's value type is void) ?
        typename std::iterator_traits<KeyInputIteratorT>::value_type,                                           // ... then the input iterator's value type,
        typename std::iterator_traits<KeyOutputIteratorT>::value_type>::Type KeyOutputT;                        // ... else the output iterator's value type

    // The input values type
    typedef typename std::iterator_traits<ValueInputIteratorT>::value_type ValueInputT;

    // The output values type
    typedef typename If<(Equals<typename std::iterator_traits<ValueOutputIteratorT>::value_type, void>::VALUE), // OutputT =  (if output iterator's value type is void) ?
        typename std::iterator_traits<ValueInputIteratorT>::value_type,                                         // ... then the input iterator's value type,
        typename std::iterator_traits<ValueOutputIteratorT>::value_type>::Type ValueOuputT;                     // ... else the output iterator's value type

    if (d_temp_storage == 0)
    {
        temp_storage_bytes = 1;
    }
    else
    {
        thrust::device_ptr<KeyInputT> d_keys_in_wrapper(d_keys_in);
        thrust::device_ptr<KeyOutputT> d_keys_out_wrapper(d_keys_out);

        thrust::device_ptr<ValueInputT> d_values_in_wrapper(d_values_in);
        thrust::device_ptr<ValueOuputT> d_values_out_wrapper(d_values_out);

        thrust::pair<thrust::device_ptr<KeyOutputT>, thrust::device_ptr<ValueOuputT> > d_out_ends;

        for (int i = 0; i < timing_timing_iterations; ++i)
        {
            d_out_ends = thrust::reduce_by_key(
                d_keys_in_wrapper,
                d_keys_in_wrapper + num_items,
                d_values_in_wrapper,
                d_keys_out_wrapper,
                d_values_out_wrapper);
        }

        OffsetT num_segments = OffsetT(d_out_ends.first - d_keys_out_wrapper);
        CubDebugExit(cudaMemcpy(d_num_runs, &num_segments, sizeof(OffsetT), cudaMemcpyHostToDevice));

    }

    return cudaSuccess;
}



//---------------------------------------------------------------------
// CUDA Nested Parallelism Test Kernel
//---------------------------------------------------------------------

/**
 * Simple wrapper kernel to invoke DeviceSelect
 */
template <
    typename                    KeyInputIteratorT,
    typename                    KeyOutputIteratorT,
    typename                    ValueInputIteratorT,
    typename                    ValueOutputIteratorT,
    typename                    NumRunsIteratorT,
    typename                    EqualityOpT,
    typename                    ReductionOpT,
    typename                    OffsetT>
__global__ void CnpDispatchKernel(
    int                         timing_timing_iterations,
    size_t                      *d_temp_storage_bytes,
    cudaError_t                 *d_cdp_error,

    void                        *d_temp_storage,
    size_t                      temp_storage_bytes,
    KeyInputIteratorT           d_keys_in,
    KeyOutputIteratorT          d_keys_out,
    ValueInputIteratorT         d_values_in,
    ValueOutputIteratorT        d_values_out,
    NumRunsIteratorT            d_num_runs,
    EqualityOpT                 equality_op,
    ReductionOpT                reduction_op,
    OffsetT                     num_items,
    cudaStream_t                stream,
    bool                        debug_synchronous)
{

#ifndef CUB_CDP
    *d_cdp_error = cudaErrorNotSupported;
#else
    *d_cdp_error = Dispatch(Int2Type<CUB>(), timing_timing_iterations, d_temp_storage_bytes, d_cdp_error,
        d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, debug_synchronous);

    *d_temp_storage_bytes = temp_storage_bytes;
#endif
}


/**
 * Dispatch to CDP kernel
 */
template <
    typename                    KeyInputIteratorT,
    typename                    KeyOutputIteratorT,
    typename                    ValueInputIteratorT,
    typename                    ValueOutputIteratorT,
    typename                    NumRunsIteratorT,
    typename                    EqualityOpT,
    typename                    ReductionOpT,
    typename                    OffsetT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CDP>               dispatch_to,
    int                         timing_timing_iterations,
    size_t                      *d_temp_storage_bytes,
    cudaError_t                 *d_cdp_error,

    void                        *d_temp_storage,
    size_t                      &temp_storage_bytes,
    KeyInputIteratorT           d_keys_in,
    KeyOutputIteratorT          d_keys_out,
    ValueInputIteratorT         d_values_in,
    ValueOutputIteratorT        d_values_out,
    NumRunsIteratorT            d_num_runs,
    EqualityOpT                 equality_op,
    ReductionOpT                reduction_op,
    OffsetT                     num_items,
    cudaStream_t                stream,
    bool                        debug_synchronous)
{
    // Invoke kernel to invoke device-side dispatch
    CnpDispatchKernel<<<1,1>>>(timing_timing_iterations, d_temp_storage_bytes, d_cdp_error,
        d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, debug_synchronous);

    // Copy out temp_storage_bytes
    CubDebugExit(cudaMemcpy(&temp_storage_bytes, d_temp_storage_bytes, sizeof(size_t) * 1, cudaMemcpyDeviceToHost));

    // Copy out error
    cudaError_t retval;
    CubDebugExit(cudaMemcpy(&retval, d_cdp_error, sizeof(cudaError_t) * 1, cudaMemcpyDeviceToHost));
    return retval;
}



//---------------------------------------------------------------------
// Test generation
//---------------------------------------------------------------------


/**
 * Initialize problem
 */
template <typename T>
void Initialize(
    int         entropy_reduction,
    T           *h_in,
    int         num_items,
    int         max_segment)
{
    unsigned int max_int = (unsigned int) -1;

    int key = 0;
    int i = 0;
    while (i < num_items)
    {
        // Select number of repeating occurrences

        int repeat;

        if (max_segment < 0)
        {
            repeat = num_items;
        }
        else if (max_segment < 2)
        {
            repeat = 1;
        }
        else
        {
            RandomBits(repeat, entropy_reduction);
            repeat = (int) ((double(repeat) * double(max_segment)) / double(max_int));
            repeat = CUB_MAX(1, repeat);
        }

        int j = i;
        while (j < CUB_MIN(i + repeat, num_items))
        {
            InitValue(INTEGER_SEED, h_in[j], key);
            j++;
        }

        i = j;
        key++;
    }

    if (g_verbose)
    {
        printf("Input:\n");
        DisplayResults(h_in, num_items);
        printf("\n\n");
    }
}


/**
 * Solve problem.  Returns total number of segments identified
 */
template <
    typename        KeyInputIteratorT,
    typename        ValueInputIteratorT,
    typename        KeyT,
    typename        ValueT,
    typename        EqualityOpT,
    typename        ReductionOpT>
int Solve(
    KeyInputIteratorT       h_keys_in,
    KeyT                    *h_keys_reference,
    ValueInputIteratorT     h_values_in,
    ValueT                  *h_values_reference,
    EqualityOpT             equality_op,
    ReductionOpT            reduction_op,
    int                     num_items)
{
    // First item
    KeyT previous        = h_keys_in[0];
    ValueT aggregate     = h_values_in[0];
    int num_segments    = 0;

    // Subsequent items
    for (int i = 1; i < num_items; ++i)
    {
        if (!equality_op(previous, h_keys_in[i]))
        {
            h_keys_reference[num_segments] = previous;
            h_values_reference[num_segments] = aggregate;
            num_segments++;
            aggregate = h_values_in[i];
        }
        else
        {
            aggregate = reduction_op(aggregate, h_values_in[i]);
        }
        previous = h_keys_in[i];
    }

    h_keys_reference[num_segments] = previous;
    h_values_reference[num_segments] = aggregate;
    num_segments++;

    return num_segments;
}



/**
 * Test DeviceSelect for a given problem input
 */
template <
    Backend             BACKEND,
    typename            DeviceKeyInputIteratorT,
    typename            DeviceValueInputIteratorT,
    typename            KeyT,
    typename            ValueT,
    typename            EqualityOpT,
    typename            ReductionOpT>
void Test(
    DeviceKeyInputIteratorT     d_keys_in,
    DeviceValueInputIteratorT   d_values_in,
    KeyT*                       h_keys_reference,
    ValueT*                     h_values_reference,
    EqualityOpT                 equality_op,
    ReductionOpT                reduction_op,
    int                         num_segments,
    int                         num_items)
{
    // Allocate device output arrays and number of segments
    KeyT*   d_keys_out             = NULL;
    ValueT* d_values_out           = NULL;
    int*    d_num_runs         = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_keys_out, sizeof(KeyT) * num_items));
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_values_out, sizeof(ValueT) * num_items));
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_num_runs, sizeof(int)));

    // Allocate CDP device arrays
    size_t          *d_temp_storage_bytes = NULL;
    cudaError_t     *d_cdp_error = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_temp_storage_bytes,  sizeof(size_t) * 1));
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_cdp_error,           sizeof(cudaError_t) * 1));

    // Allocate temporary storage
    void            *d_temp_storage = NULL;
    size_t          temp_storage_bytes = 0;
    CubDebugExit(Dispatch(Int2Type<BACKEND>(), 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, true));
    CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));

    // Clear device output arrays
    CubDebugExit(cudaMemset(d_keys_out, 0, sizeof(KeyT) * num_items));
    CubDebugExit(cudaMemset(d_values_out, 0, sizeof(ValueT) * num_items));
    CubDebugExit(cudaMemset(d_num_runs, 0, sizeof(int)));

    // Run warmup/correctness iteration
    CubDebugExit(Dispatch(Int2Type<BACKEND>(), 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, true));

    // Check for correctness (and display results, if specified)
    int compare1 = CompareDeviceResults(h_keys_reference, d_keys_out, num_segments, true, g_verbose);
    printf("\t Keys %s ", compare1 ? "FAIL" : "PASS");

    int compare2 = CompareDeviceResults(h_values_reference, d_values_out, num_segments, true, g_verbose);
    printf("\t Values %s ", compare2 ? "FAIL" : "PASS");

    int compare3 = CompareDeviceResults(&num_segments, d_num_runs, 1, true, g_verbose);
    printf("\t Count %s ", compare3 ? "FAIL" : "PASS");

    // Flush any stdout/stderr
    fflush(stdout);
    fflush(stderr);

    // Performance
    GpuTimer gpu_timer;
    gpu_timer.Start();
    CubDebugExit(Dispatch(Int2Type<BACKEND>(), g_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_keys_in, d_keys_out, d_values_in, d_values_out, d_num_runs, equality_op, reduction_op, num_items, 0, false));
    gpu_timer.Stop();
    float elapsed_millis = gpu_timer.ElapsedMillis();

    // Display performance
    if (g_timing_iterations > 0)
    {
        float   avg_millis  = elapsed_millis / g_timing_iterations;
        float   giga_rate   = float(num_items) / avg_millis / 1000.0f / 1000.0f;
        int     bytes_moved = ((num_items + num_segments) * sizeof(KeyT)) + ((num_items + num_segments) * sizeof(ValueT));
        float   giga_bandwidth  = float(bytes_moved) / avg_millis / 1000.0f / 1000.0f;
        printf(", %.3f avg ms, %.3f billion items/s, %.3f logical GB/s", avg_millis, giga_rate, giga_bandwidth);
    }
    printf("\n\n");

    // Flush any stdout/stderr
    fflush(stdout);
    fflush(stderr);

    // Cleanup
    if (d_keys_out) CubDebugExit(g_allocator.DeviceFree(d_keys_out));
    if (d_values_out) CubDebugExit(g_allocator.DeviceFree(d_values_out));
    if (d_num_runs) CubDebugExit(g_allocator.DeviceFree(d_num_runs));
    if (d_temp_storage_bytes) CubDebugExit(g_allocator.DeviceFree(d_temp_storage_bytes));
    if (d_cdp_error) CubDebugExit(g_allocator.DeviceFree(d_cdp_error));
    if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));

    // Correctness asserts
    AssertEquals(0, compare1 | compare2 | compare3);
}


/**
 * Test DeviceSelect on pointer type
 */
template <
    Backend         BACKEND,
    typename        KeyT,
    typename        ValueT,
    typename        ReductionOpT>
void TestPointer(
    int             num_items,
    int             entropy_reduction,
    int             max_segment,
    ReductionOpT    reduction_op)
{
    // Allocate host arrays
    KeyT* h_keys_in        = new KeyT[num_items];
    KeyT* h_keys_reference = new KeyT[num_items];

    ValueT* h_values_in        = new ValueT[num_items];
    ValueT* h_values_reference = new ValueT[num_items];

    for (int i = 0; i < num_items; ++i)
        InitValue(INTEGER_SEED, h_values_in[i], 1);

    // Initialize problem and solution
    Equality equality_op;
    Initialize(entropy_reduction, h_keys_in, num_items, max_segment);
    int num_segments = Solve(h_keys_in, h_keys_reference, h_values_in, h_values_reference, equality_op, reduction_op, num_items);

    printf("\nPointer %s cub::DeviceReduce::ReduceByKey %s reduction of %d items, %d segments (avg run length %.3f), {%s,%s} key value pairs, max_segment %d, entropy_reduction %d\n",
        (BACKEND == CDP) ? "CDP CUB" : (BACKEND == THRUST) ? "Thrust" : "CUB",
        (Equals<ReductionOpT, Sum>::VALUE) ? "Sum" : "Max",
        num_items, num_segments, float(num_items) / num_segments,
        typeid(KeyT).name(), typeid(ValueT).name(),
        max_segment, entropy_reduction);
    fflush(stdout);

    // Allocate problem device arrays
    KeyT     *d_keys_in = NULL;
    ValueT   *d_values_in = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_keys_in, sizeof(KeyT) * num_items));
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_values_in, sizeof(ValueT) * num_items));

    // Initialize device input
    CubDebugExit(cudaMemcpy(d_keys_in, h_keys_in, sizeof(KeyT) * num_items, cudaMemcpyHostToDevice));
    CubDebugExit(cudaMemcpy(d_values_in, h_values_in, sizeof(ValueT) * num_items, cudaMemcpyHostToDevice));

    // Run Test
    Test<BACKEND>(d_keys_in, d_values_in, h_keys_reference, h_values_reference, equality_op, reduction_op, num_segments, num_items);

    // Cleanup
    if (h_keys_in) delete[] h_keys_in;
    if (h_values_in) delete[] h_values_in;
    if (h_keys_reference) delete[] h_keys_reference;
    if (h_values_reference) delete[] h_values_reference;
    if (d_keys_in) CubDebugExit(g_allocator.DeviceFree(d_keys_in));
    if (d_values_in) CubDebugExit(g_allocator.DeviceFree(d_values_in));
}


/**
 * Test on iterator type
 */
template <
    Backend         BACKEND,
    typename        KeyT,
    typename        ValueT,
    typename        ReductionOpT>
void TestIterator(
    int             num_items,
    int             entropy_reduction,
    int             max_segment,
    ReductionOpT    reduction_op)
{
    // Allocate host arrays
    KeyT* h_keys_in        = new KeyT[num_items];
    KeyT* h_keys_reference = new KeyT[num_items];

    ValueT one_val;
    InitValue(INTEGER_SEED, one_val, 1);
    ConstantInputIterator<ValueT, int> h_values_in(one_val);
    ValueT* h_values_reference = new ValueT[num_items];

    // Initialize problem and solution
    Equality equality_op;
    Initialize(entropy_reduction, h_keys_in, num_items, max_segment);
    int num_segments = Solve(h_keys_in, h_keys_reference, h_values_in, h_values_reference, equality_op, reduction_op, num_items);

    printf("\nIterator %s cub::DeviceReduce::ReduceByKey %s reduction of %d items, %d segments (avg run length %.3f), {%s,%s} key value pairs, max_segment %d, entropy_reduction %d\n",
        (BACKEND == CDP) ? "CDP CUB" : (BACKEND == THRUST) ? "Thrust" : "CUB",
        (Equals<ReductionOpT, Sum>::VALUE) ? "Sum" : "Max",
        num_items, num_segments, float(num_items) / num_segments,
        typeid(KeyT).name(), typeid(ValueT).name(),
        max_segment, entropy_reduction);
    fflush(stdout);

    // Allocate problem device arrays
    KeyT     *d_keys_in = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_keys_in, sizeof(KeyT) * num_items));

    // Initialize device input
    CubDebugExit(cudaMemcpy(d_keys_in, h_keys_in, sizeof(KeyT) * num_items, cudaMemcpyHostToDevice));

    // Run Test
    Test<BACKEND>(d_keys_in, h_values_in, h_keys_reference, h_values_reference, equality_op, reduction_op, num_segments, num_items);

    // Cleanup
    if (h_keys_in) delete[] h_keys_in;
    if (h_keys_reference) delete[] h_keys_reference;
    if (h_values_reference) delete[] h_values_reference;
    if (d_keys_in) CubDebugExit(g_allocator.DeviceFree(d_keys_in));
}


/**
 * Test different gen modes
 */
template <
    Backend         BACKEND,
    typename        KeyT,
    typename        ValueT,
    typename        ReductionOpT>
void Test(
    int             num_items,
    ReductionOpT    reduction_op,
    int             max_segment)
{
    // 0 key-bit entropy reduction rounds
    TestPointer<BACKEND, KeyT, ValueT>(num_items, 0, max_segment, reduction_op);

    if (max_segment > 1)
    {
        // 2 key-bit entropy reduction rounds
        TestPointer<BACKEND, KeyT, ValueT>(num_items, 2, max_segment, reduction_op);

        // 7 key-bit entropy reduction rounds
        TestPointer<BACKEND, KeyT, ValueT>(num_items, 7, max_segment, reduction_op);
    }
}


/**
 * Test different avg segment lengths modes
 */
template <
    Backend         BACKEND,
    typename        KeyT,
    typename        ValueT,
    typename        ReductionOpT>
void Test(
    int             num_items,
    ReductionOpT    reduction_op)
{
    Test<BACKEND, KeyT, ValueT>(num_items, reduction_op, -1);
    Test<BACKEND, KeyT, ValueT>(num_items, reduction_op, 1);

    // Evaluate different max-segment lengths
    for (int max_segment = 3; max_segment < CUB_MIN(num_items, (unsigned short) -1); max_segment *= 11)
    {
        Test<BACKEND, KeyT, ValueT>(num_items, reduction_op, max_segment);
    }
}



/**
 * Test different dispatch
 */
template <
    typename        KeyT,
    typename        ValueT,
    typename        ReductionOpT>
void TestDispatch(
    int             num_items,
    ReductionOpT    reduction_op)
{
    Test<CUB, KeyT, ValueT>(num_items, reduction_op);
#ifdef CUB_CDP
    Test<CDP, KeyT, ValueT>(num_items, reduction_op);
#endif
}


/**
 * Test different input sizes
 */
template <
    typename        KeyT,
    typename        ValueT,
    typename        ReductionOpT>
void TestSize(
    int             num_items,
    ReductionOpT    reduction_op)
{
    if (num_items < 0)
    {
        TestDispatch<KeyT, ValueT>(1,        reduction_op);
        TestDispatch<KeyT, ValueT>(100,      reduction_op);
        TestDispatch<KeyT, ValueT>(10000,    reduction_op);
        TestDispatch<KeyT, ValueT>(1000000,  reduction_op);
    }
    else
    {
        TestDispatch<KeyT, ValueT>(num_items, reduction_op);
    }

}


template <
    typename        KeyT,
    typename        ValueT>
void TestOp(
    int             num_items)
{
    TestSize<KeyT, ValueT>(num_items, cub::Sum());
    TestSize<KeyT, ValueT>(num_items, cub::Max());
}



//---------------------------------------------------------------------
// Main
//---------------------------------------------------------------------

/**
 * Main
 */
int main(int argc, char** argv)
{
    int num_items           = -1;
    int entropy_reduction   = 0;
    int maxseg              = 1000;

    // Initialize command line
    CommandLineArgs args(argc, argv);
    g_verbose = args.CheckCmdLineFlag("v");
    args.GetCmdLineArgument("n", num_items);
    args.GetCmdLineArgument("i", g_timing_iterations);
    args.GetCmdLineArgument("repeat", g_repeat);
    args.GetCmdLineArgument("maxseg", maxseg);
    args.GetCmdLineArgument("entropy", entropy_reduction);

    // Print usage
    if (args.CheckCmdLineFlag("help"))
    {
        printf("%s "
            "[--n=<input items> "
            "[--i=<timing iterations> "
            "[--device=<device-id>] "
            "[--maxseg=<max segment length>]"
            "[--entropy=<segment length bit entropy reduction rounds>]"
            "[--repeat=<repetitions of entire test suite>]"
            "[--v] "
            "[--cdp]"
            "\n", argv[0]);
        exit(0);
    }

    // Initialize device
    CubDebugExit(args.DeviceInit());
    printf("\n");

    // Get ptx version
    int ptx_version;
    CubDebugExit(PtxVersion(ptx_version));

#ifdef QUICKER_TEST

    // Compile/run basic CUB test
    if (num_items < 0) num_items = 32000000;

    TestPointer<CUB, int, double>(num_items, entropy_reduction, maxseg, cub::Sum());
    TestPointer<CUB, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());
    TestIterator<CUB, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());

#elif defined(QUICK_TEST)

    // Compile/run quick tests
    if (num_items < 0) num_items = 32000000;

    printf("---- RLE int ---- \n");
    TestIterator<CUB, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());

    printf("---- RLE long long ---- \n");
    TestIterator<CUB, long long, int>(num_items, entropy_reduction, maxseg, cub::Sum());

    printf("---- int ---- \n");
    TestPointer<CUB, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());
    TestPointer<THRUST, int, int>(num_items, entropy_reduction, maxseg, cub::Sum());

    printf("---- float ---- \n");
    TestPointer<CUB, int, float>(num_items, entropy_reduction, maxseg, cub::Sum());
    TestPointer<THRUST, int, float>(num_items, entropy_reduction, maxseg, cub::Sum());

    if (ptx_version > 120)                          // Don't check doubles on PTX120 or below because they're down-converted
    {
        printf("---- double ---- \n");
        TestPointer<CUB, int, double>(num_items, entropy_reduction, maxseg, cub::Sum());
        TestPointer<THRUST, int, double>(num_items, entropy_reduction, maxseg, cub::Sum());
    }

#else

    // Compile/run thorough tests
    for (int i = 0; i <= g_repeat; ++i)
    {

        // Test different input types
        TestOp<int, char>(num_items);
        TestOp<int, short>(num_items);
        TestOp<int, int>(num_items);
        TestOp<int, long>(num_items);
        TestOp<int, long long>(num_items);
        TestOp<int, float>(num_items);
        if (ptx_version > 120)                          // Don't check doubles on PTX120 or below because they're down-converted
            TestOp<int, double>(num_items);

        TestOp<int, uchar2>(num_items);
        TestOp<int, uint2>(num_items);
        TestOp<int, uint3>(num_items);
        TestOp<int, uint4>(num_items);
        TestOp<int, ulonglong4>(num_items);
        TestOp<int, TestFoo>(num_items);
        TestOp<int, TestBar>(num_items);

        TestOp<char, int>(num_items);
        TestOp<long long, int>(num_items);
        TestOp<TestFoo, int>(num_items);
        TestOp<TestBar, int>(num_items);

    }

#endif

    return 0;
}