Blame view

scripts/evaluations/clustering.py 5.01 KB
e403ed5fb   Mathias   Add a script that...
1
2
3
4
5
6
7
8
9
  '''
  This script allows the user to evaluate a classification system on new labels using clustering methods.
  The algorithms are applied on the given latent space (embedding).
  '''
  import argparse
  import numpy as np
  import pandas as pd
  import os
  import time
adbca3b1c   Mathias   Save the kmeans m...
10
  import pickle
e403ed5fb   Mathias   Add a script that...
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
  from sklearn.preprocessing import LabelEncoder
  from sklearn.metrics.pairwise import pairwise_distances
  from sklearn.metrics import f1_score
  from sklearn.cluster import KMeans
  from sklearn.manifold import TSNE
  import matplotlib.pyplot as plt
  
  from volia.data_io import read_features,read_lst
  
  if __name__ == "__main__":
      # Argparse
      parser = argparse.ArgumentParser("Compute clustering on a latent space")
      parser.add_argument("features")
      parser.add_argument("utt2",
                          type=str,
                          help="file with [utt] [value]")
0d218501a   Mathias   Add an option to ...
27
28
29
30
31
32
33
34
      parser.add_argument("--idsfrom",
                          type=str,
                          default="utt2",
                          choices=[
                              "features",
                              "utt2"
                          ],
                          help="from features or from utt2?")
85d6f0944   Mathias   Add default value...
35
36
      parser.add_argument("--prefix",
                          default="",
e403ed5fb   Mathias   Add a script that...
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
                          type=str,
                          help="prefix of saved files")
      parser.add_argument("--outdir",
                          default=None,
                          type=str,
                          help="Output directory")
      
      args = parser.parse_args()
  
      assert args.outdir
  
      start = time.time()
  
      # Load features and utt2
      features = read_features(args.features)
      utt2 = read_lst(args.utt2)
0d218501a   Mathias   Add an option to ...
53
54
55
56
57
58
59
60
61
      # Take id list
      if args.idsfrom == "features":
          ids = list(features.keys())
      elif args.idsfrom == "utt2":
          ids = list(utt2.keys())
      else:
          print(f"idsfrom is not good: {args.idsfrom}")
          exit(1)
      
e403ed5fb   Mathias   Add a script that...
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
      feats = np.vstack([ features[id_] for id_ in ids ])
      classes = [ utt2[id_] for id_ in ids ]
  
      # Encode labels
      le = LabelEncoder()
      labels = le.fit_transform(classes)
      num_classes = len(le.classes_)
  
      # Compute KMEANS clustering on data
      estimator = KMeans(
          n_clusters=num_classes,
          n_init=100,
          tol=10-6,
          algorithm="elkan"
      )
      estimator.fit(feats)
      print(f"Kmeans: processed {estimator.n_iter_} iterations - intertia={estimator.inertia_}")
adbca3b1c   Mathias   Save the kmeans m...
79
80
81
      with open(os.path.join(args.outdir, "kmeans.pkl"), "wb") as f:
          pickle.dump(estimator, f)
      
e403ed5fb   Mathias   Add a script that...
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
      # contains distance to each cluster for each sample
      dist_space = estimator.transform(feats)
      predictions = np.argmin(dist_space, axis=1)
  
      # gives each cluster a name (considering most represented character)
      dataframe = pd.DataFrame({
          "label": pd.Series(list(map(lambda x: le.classes_[x], labels))),
          "prediction": pd.Series(predictions)
      })
  
      def find_cluster_name_fn(c):
          mask = dataframe["prediction"] == c
          return dataframe[mask]["label"].value_counts(sort=False).idxmax()
      
      cluster_names = list(map(find_cluster_name_fn, range(num_classes)))
      predicted_labels = le.transform(
          [cluster_names[pred] for pred in predictions])
      
      # F-measure
      fscores = f1_score(labels, predicted_labels, average=None)
      fscores_str = "
  ".join(map(lambda i: "{0:25s}: {1:.4f}".format(le.classes_[i], fscores[i]), range(len(fscores))))
      print(f"F1-scores for each classes:
  {fscores_str}")
      print(f"Global score : {np.mean(fscores)}")
      with open(os.path.join(args.outdir, args.prefix + "eval_clustering.log"), "w") as fd:
          print(f"F1-scores for each classes:
  {fscores_str}", file=fd)
          print(f"Global score : {np.mean(fscores)}", file=fd)
      
      # Process t-SNE and plot
      tsne_estimator = TSNE()
      embeddings = tsne_estimator.fit_transform(feats)
      print("t-SNE: processed {0} iterations - KL_divergence={1:.4f}".format(
          tsne_estimator.n_iter_, tsne_estimator.kl_divergence_))
  
      fig, [axe1, axe2] = plt.subplots(1, 2, figsize=(10, 5))
      for c, name in enumerate(le.classes_):
          c_mask = np.where(labels == c)
          axe1.scatter(embeddings[c_mask][:, 0], embeddings[c_mask][:, 1], label=name, alpha=0.2, edgecolors=None)
  
          try:
              id_cluster = cluster_names.index(name)
          except ValueError:
              print("WARNING: no cluster found for {}".format(name))
              continue
          c_mask = np.where(predictions == id_cluster)
          axe2.scatter(embeddings[c_mask][:, 0], embeddings[c_mask][:, 1], label=name, alpha=0.2, edgecolors=None)
      
      axe1.legend(loc="lower center", bbox_to_anchor=(0.5, -0.35))
      axe1.set_title("true labels")
      axe2.legend(loc="lower center", bbox_to_anchor=(0.5, -0.35))
      axe2.set_title("predicted cluster label")
  
      plt.suptitle("Kmeans Clustering")
  
      loc = os.path.join(
          args.outdir,
          args.prefix + "kmeans.pdf"
      )
      plt.savefig(loc, bbox_inches="tight")
      plt.close()
  
      print("INFO: figure saved at {}".format(loc))
  
      end = time.time()
      print("program ended in {0:.2f} seconds".format(end-start))