clustering.py
5.01 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
'''
This script allows the user to evaluate a classification system on new labels using clustering methods.
The algorithms are applied on the given latent space (embedding).
'''
import argparse
import numpy as np
import pandas as pd
import os
import time
import pickle
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.metrics import f1_score
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from volia.data_io import read_features,read_lst
if __name__ == "__main__":
# Argparse
parser = argparse.ArgumentParser("Compute clustering on a latent space")
parser.add_argument("features")
parser.add_argument("utt2",
type=str,
help="file with [utt] [value]")
parser.add_argument("--idsfrom",
type=str,
default="utt2",
choices=[
"features",
"utt2"
],
help="from features or from utt2?")
parser.add_argument("--prefix",
default="",
type=str,
help="prefix of saved files")
parser.add_argument("--outdir",
default=None,
type=str,
help="Output directory")
args = parser.parse_args()
assert args.outdir
start = time.time()
# Load features and utt2
features = read_features(args.features)
utt2 = read_lst(args.utt2)
# Take id list
if args.idsfrom == "features":
ids = list(features.keys())
elif args.idsfrom == "utt2":
ids = list(utt2.keys())
else:
print(f"idsfrom is not good: {args.idsfrom}")
exit(1)
feats = np.vstack([ features[id_] for id_ in ids ])
classes = [ utt2[id_] for id_ in ids ]
# Encode labels
le = LabelEncoder()
labels = le.fit_transform(classes)
num_classes = len(le.classes_)
# Compute KMEANS clustering on data
estimator = KMeans(
n_clusters=num_classes,
n_init=100,
tol=10-6,
algorithm="elkan"
)
estimator.fit(feats)
print(f"Kmeans: processed {estimator.n_iter_} iterations - intertia={estimator.inertia_}")
with open(os.path.join(args.outdir, "kmeans.pkl"), "wb") as f:
pickle.dump(estimator, f)
# contains distance to each cluster for each sample
dist_space = estimator.transform(feats)
predictions = np.argmin(dist_space, axis=1)
# gives each cluster a name (considering most represented character)
dataframe = pd.DataFrame({
"label": pd.Series(list(map(lambda x: le.classes_[x], labels))),
"prediction": pd.Series(predictions)
})
def find_cluster_name_fn(c):
mask = dataframe["prediction"] == c
return dataframe[mask]["label"].value_counts(sort=False).idxmax()
cluster_names = list(map(find_cluster_name_fn, range(num_classes)))
predicted_labels = le.transform(
[cluster_names[pred] for pred in predictions])
# F-measure
fscores = f1_score(labels, predicted_labels, average=None)
fscores_str = "\n".join(map(lambda i: "{0:25s}: {1:.4f}".format(le.classes_[i], fscores[i]), range(len(fscores))))
print(f"F1-scores for each classes:\n{fscores_str}")
print(f"Global score : {np.mean(fscores)}")
with open(os.path.join(args.outdir, args.prefix + "eval_clustering.log"), "w") as fd:
print(f"F1-scores for each classes:\n{fscores_str}", file=fd)
print(f"Global score : {np.mean(fscores)}", file=fd)
# Process t-SNE and plot
tsne_estimator = TSNE()
embeddings = tsne_estimator.fit_transform(feats)
print("t-SNE: processed {0} iterations - KL_divergence={1:.4f}".format(
tsne_estimator.n_iter_, tsne_estimator.kl_divergence_))
fig, [axe1, axe2] = plt.subplots(1, 2, figsize=(10, 5))
for c, name in enumerate(le.classes_):
c_mask = np.where(labels == c)
axe1.scatter(embeddings[c_mask][:, 0], embeddings[c_mask][:, 1], label=name, alpha=0.2, edgecolors=None)
try:
id_cluster = cluster_names.index(name)
except ValueError:
print("WARNING: no cluster found for {}".format(name))
continue
c_mask = np.where(predictions == id_cluster)
axe2.scatter(embeddings[c_mask][:, 0], embeddings[c_mask][:, 1], label=name, alpha=0.2, edgecolors=None)
axe1.legend(loc="lower center", bbox_to_anchor=(0.5, -0.35))
axe1.set_title("true labels")
axe2.legend(loc="lower center", bbox_to_anchor=(0.5, -0.35))
axe2.set_title("predicted cluster label")
plt.suptitle("Kmeans Clustering")
loc = os.path.join(
args.outdir,
args.prefix + "kmeans.pdf"
)
plt.savefig(loc, bbox_inches="tight")
plt.close()
print("INFO: figure saved at {}".format(loc))
end = time.time()
print("program ended in {0:.2f} seconds".format(end-start))